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The flow of a gas stream past a flat plate under the influence of rainfall is investigated.
As raindrops sediment on the flat plate, they coalesce to form a water film that flows
under the action of shear from the surrounding gas stream. In the limit of (a) large
Reynolds number, Re, in the gas phase, (b) small rainfall rate, ṙ, compared to the
free-stream velocity, U∞, and (c) small film thickness compared to the thickness of the
boundary layer that surrounds it, a similarity solution is obtained that predicts growth
of the liquid film like x3/4; x denotes dimensionless distance from the leading edge.
The flow in the gas stream closely resembles the Blasius solution, whereas viscous
dissipation dominates inside the film. Local linear stability analysis is performed,
assuming nearly parallel base flow in the two streams, and operating in the triple-
deck regime. Two distinct families of eigenvalues are identified, one corresponding
to the well-known Tollmien–Schlichting (TS) waves that originate in the gas stream,
and the other corresponding to an interfacial instability. It is shown that, for the
air–water system, the TS waves are convectively unstable whereas the interfacial
waves exhibit a pocket of absolute instability, at the streamwise location of the
applied disturbance. Moreover, it is found that as the inverse Weber number (We−1)
increases, indicating the increasing effect of surface tension compared to inertia, the
pocket of absolute instability is translated towards larger distances from the leading
edge and the growth rate of unstable waves decreases, until a critical value is reached,
We−1 ≈ We−1

c , beyond which the family of interfacial waves becomes convectively
unstable. Increasing the inverse Froude number (Fr−1), indicating the increasing
effect of gravity compared to inertia, results in the pocket of absolute instability
shrinking until a critical value is reached, Fr−1 ≈ Fr−1

c , beyond which the family
of interfacial waves becomes convectively unstable. As We−1 and Fr−1 are further
increased, interfacial waves are eventually stabilized, as expected. In this context,
increasing the rainfall rate or the free-stream velocity results in extending the region
of absolute instability over most of the airfoil surface. Owing to this behaviour it
is conjectured that a global mode that interacts with the boundary layer may arise
at the interface and, eventually, lead to three-dimensional waves (rivulets), or, under
extreme conditions, even premature separation.

1. Introduction
Aircraft behaviour under conditions of heavy rain and high wind shear has been

studied with increasing interest in the past ten years owing to a number of accidents
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that have occurred under such weather conditions (Dunham 1987). Most of these
accidents took place at low altitudes, while the aircraft was either landing or taking
off. Extensive experimental investigations on commercial airfoils conducted by NASA
(Campbell & Bezos 1989) indicate a pattern of decreasing lift capability and increasing
drag coefficient with increasing intensity of rain. In addition, flow patterns captured
via the use of ultraviolet strobe light reveal that, at small angles of attack, a liquid
film is formed that covers the wing surface except for two regions. The first one lies
near the leading edge, where droplet impact splashing takes place, whereas the second
one is formed as a result of the disruption of the continuity of the film which breaks
up into rivulets that run towards the trailing edge. As the angle of attack increases,
the rivulets begin to form closer to the leading edge of the airfoil until, for angles of
attack corresponding to stall conditions, the film disappears and the flow separates
with significant performance loss. It is believed that the interaction between the thin
liquid film and the surrounding boundary layer is responsible for the above pattern
(Campbell & Bezos 1989). In a similar context, anti-icing fluids applied on the wing
surface in order to prevent frost, ice or snow from adhering to it, can have an adverse
aerodynamic effect if they fail to flow off the wing, as the plane accelerates on the
runway, and leave a clean surface at the time of lift-off (van Hengst 1991).

The fundamental question raised by these effects concerns the mechanism of wave
formation in the film and the fashion by which these waves interact with the boundary
layer. It is understood that the wavy film layer produces an increase of the aero-
dynamic roughness of the wing surface thus thickening the boundary layer surround-
ing it. This is thought to be the dominant mechanism for lift loss (Carbonaro &
Ozgen 1997). Clearly the displacement thickness is a quantity that must be related
to the variation of the aerodynamic characteristics of the airfoil. However, Feo &
Gonzalez (1985) found that performance degradation can also take place as a result of
premature boundary layer separation caused by the interaction between the thin film
and the surrounding gas stream. They used the wind tunnel facility at NASA-Langley
in order to measure the evolution of film thickness on a NACA 64-210 airfoil under
conditions of simulated rainfall, and were able to verify the formation of a continuous
liquid film on the upper and lower airfoil surfaces for a wide range of parameters.
The film thickness on the upper airfoil surface invariably exhibited a maximum in
the vicinity of the position of maximum airfoil thickness followed by a reduction
in magnitude until eventually its continuity was disrupted halfway along the airfoil,
probably due to the formation of rivulets that evolve in the spanwise direction of the
airfoil. The maximum thickness of the film was observed to become as much as twice
as large as the local boundary layer thickness. Evaluation of these findings led to the
plausible conjecture that the water film in the upper surface may be responsible for
increased skin friction and premature boundary layer separation. Indeed, steady-state
simulations of the growth of a liquid film on a model airfoil surface, for zero angle
of attack, carried out by Smyrnaios, Pelekasis & Tsamopoulos (2000) indicate that
such a premature boundary layer separation can occur in the presence of a liquid
film but the maximum in the film thickness that characterizes its wavy shape cannot
be predicted, in the relevant parameter range. Consequently, such a pattern may be
part of the dynamic interaction between the film and the air stream. The early stages
of this interaction, when the variation of the film thickness remains small, can be
captured by linear analysis, which is the approach adopted in the present study.

Yih (1967) was the first to present an analysis for two-dimensional, long-wavelength
disturbances of two superposed fluids in plane Poiseuille flow. Yih derived a general
expression for the complex wave speed and showed that viscosity stratification can
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give rise to an interfacial mode, which exists for arbitrarily small Reynolds numbers.
He did not, however, proceed to examine the dependence of the growth rate on the
parameters of the problem, such as the density ratio, or the thickness ratio of the two
layers. Yiantsios & Higgins (1988) carried out a numerical study of the linear stability
of plane Poiseuille flow of two superposed fluids and confirmed previous findings by
various investigators, Yih (1967) and Hooper (1985) among others, according to which
a thin layer of more viscous fluid adjacent to a solid boundary is linearly unstable
to an interfacial mode. They did not follow this mode to very large values of the
Reynolds number nor did they carry out an extensive comparison between the growth
rates of this mode and those of the Tollmien–Schlichting mode, corresponding to the
shear mode in their study, owing to numerical difficulties. The Tollmien–Schlichting
(TS) waves originate in the bulk of the air flow and eventually lead to turbulence.
Hooper & Boyd (1987) examined the flow of two superposed fluids in linear shearing
motion bounded by a wall. For large values of the Reynolds number, waves longer
than the thickness of the lower fluid arise, that can be longer or shorter than the
thickness of the viscous sublayer in the upper fluid, depending on whether the lower
fluid is more or less viscous than the upper one, respectively. Such waves arise in
the context of our analysis as well. Of course, when the combination air–water is
examined only the former type of wave is recovered. The third type of instability
discovered by Hooper & Boyd, related to the ratio of kinematic viscosity of the two
fluids, cannot be captured here because it requires a much larger value of the inner
fluid thickness.

All of the above studies presented a limited comparison of the different types of
waves that can arise in two-phase flow without, however, focusing on the details of
boundary layer flow over a growing thin film. More recently, and in order to investigate
the effect of de-/anti-icing fluids on airfoil performance, several studies have appeared
that treat the basic flow as parallel and solve the Orr–Sommerfeld equations for the
stability of a gas boundary layer flowing over a Newtonian (Carbonaro & Ozgen
1997), or a power law fluid (Boelens & Hoeijmakers 1997; Ozgen, Degrez & Sarma
1998). The latter two studies use a spectral method and the backward integration
method (Drazin & Reid 1981), respectively, for the calculation of the frequency
ω given the wavenumber, α, and the parameters of the problem (temporal stability
analysis). Owing to the high Reynolds number of the flow and the complicated nature
of the eigenvalue problem, numerical evaluation of the eigenvalues is quite tedious
as it requires iterations (Boelens & Hoeijmakers 1997). Consequently, both studies
perform temporal stability analysis relying on Gaster’s (1962) transformation, which
holds true mainly near the region where the imaginary parts of the eigenvalues cross
zero, for the evolution of α as a function of ω (spatial stability analysis). They find
that TS waves are dominant over the interfacial waves and they suggest that research
should focus on creating waves that transport as much fluid as possible in order to
clean the wing during take-off.

In an effort to circumvent the numerical problems associated with solving the
Orr–Sommerfeld equations at large Reynolds numbers, Timoshin (1997) performed
a linear stability analysis of a boundary layer developing over a thin film using
triple-deck theory, and assuming parallel basic flow. In the context of temporal
stability analysis he calculated the eigenfrequencies, given the wavenumber and the
parameters describing the combined motion of the two fluids. In doing so, he was
able to recover the interfacial modes predicted by Hooper & Boyd (1987), both when
the film viscosity is greater than that of the ambient fluid – long waves stemming from
a point located in the upper branch of the neutral stability curve – and when the film
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viscosity is smaller – shorter scale waves stemming from a point located in the lower
branch of the neutral stability curve. The concept of lower and upper neutral branch
is borrowed here from the neutral stability curve discovered for TS waves (Jordinson
1970). In the former case, taking relatively large values of the wavenumber and the
density ratio of the two fluids to be of O(1), he found that the interfacial modes grow
faster than the TS disturbances. A related triple-deck approach has been adopted by
Tsao, Rothmayer & Ruban (1997) with application to airplane de-icing technology.
They assume extremely large viscosity and density of the de-icing fluid, essentially
decoupling the dynamics of the two layers and focusing on interfacial waves. In
the present study we are interested in comparing the behaviour of the two modes.
Therefore, we allow the density and viscosity ratios of the fluids in the two layers to
remain O(1) in the analysis, in general, even though they have quite small values for
the air/water system studied here. As will be seen in § 5.1.2 the asymptotic solution
in the limit of negligible viscosity in the gas stream significantly underpredicts the
neutral stability point in the case of air/water interaction with viscosity ratio 0.018,
roughly.

The primary concern of the research effort initiated by the present study is the
investigation of the spatio-temporal behaviour of TS and interfacial instabilities in
the context of stratified boundary layer flow while adhering to the parallel base
flow assumption. The conjecture that connects this study with the experimental
observations mentioned at the beginning of this section is that the onset of interfacial
instability causes such intense interaction with the boundary layer that, under certain
conditions, it can lead to premature separation. The nature and growth rate of
interfacial and TS waves is identified and compared, whereas three-dimensional
effects and the formation of rivulets are left for a future study. The proper context for
studying boundary layer stability in the presence of an obstacle, in the present case
the growing liquid film, when the Reynolds number is very large, is provided by the
triple-deck theory by Stewartson & Williams (1969), Neiland (1969), Messiter (1970)
most notably among others (for a good reference article summarizing previously
obtained results regarding triple-deck theory see also Smith et al. 1981). In these
articles the authors establish the method and give the proper characteristic length
scales of the obstacle for separation to occur. As is well known for boundary layer
flow past a flat plate at high Reynolds number, in the absence of the film the most
amplified TS waves appear near their lower neutral branch, figure 1 in Smith (1979),
and their wavelength and time scales are LRe−3/8, LRe−1/4/U∞, respectively; L is
the characteristic length scale along the plate. In this range of wavelengths the flow
consists of a viscous layer, the lower deck, that is attached to the wall and whose
thickness is of order LRe−5/8. This layer is embedded in an order LRe−1/2 inviscid yet
rotational layer, the main deck, and that in turn is embedded in the order LRe−3/8

upper deck where potential flow conditions exist, figure 1. As was pointed out by
Smith et al. (1981), the smallest size, Hf , of an obstacle of length λ ∼ LRe−3/8 � L,
that can cause large-scale separation of the flow is that with height that belongs to
the triple-deck regime, Hf ∼ LRe−5/8. We would like to investigate this possibility
in the context of the present problem. For this reason, given the length scale L, the
rainfall rate, ṙ, the free-stream velocity, U∞, and the physical properties of the gas
stream – density ρ and viscosity µ, Re = LU∞ρ/µ – and the water film – density ρw
and viscosity µw – we choose to study a case with characteristic film thickness Hf and
wavelength λ corresponding to the triple-deck regime. A characteristic value for Hf

is given in § 2. With this formulation the TS waves, modified by the presence of the
film, as well as the interfacial waves, can be captured. The evolution of the basic
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Figure 1. Schematic representation of the triple-deck structure of the flow.

flow with the distance from the leading edge, x, is neglected in the present order
of approximation, while the analysis is limited to linear disturbances, leaving global
spatial development and nonlinear growth to a future treatment. It should also be
noted that, if needed, turbulent boundary layers may be examined by considering the
appropriate mean velocity distribution, Benjamin (1958).

The triple-deck approach undertaken in the present study is similar to the one pre-
sented by Timoshin (1997), with the difference that here the focus is on distinguishing
between spatially developing modes and absolutely unstable modes that grow with
time. It should also be noted that the base flow used here differs from that adopted
by Timoshin in that we allow for an increasing film thickness, whereas he employs the
constant volumetric flow rate solution provided by Nelson, Alving & Joseph (1995)
leading to a film thickness that decays with increasing distance from the leading
edge. In view of the non-parallel nature of the basic flow, a local stability analysis is
undertaken that examines the evolution of unstable waves around a selected position
x0 of the basic flow where the disturbance is applied. Such waves are characterized
by a length scale λ � L, which amounts to assuming nearly parallel basic flow
conditions. In order to simulate disturbances normally applied in experiments the
response of the system to an impulse in space and time is investigated. This approach
was originally proposed by Briggs (1964) in the context of plasma physics, and has
received increased attention in the field of fluid mechanics; see e.g. the review article
by Huerre & Monkewitz (1990). It is then possible to characterize the response of the
system to an impulse, at each streamwise location within the parallel flow approxi-
mation, as locally absolutely unstable when localized disturbances spread upstream
and downstream and contaminate the entire parallel flow, whereas it is locally con-
vectively unstable when localized disturbances are swept away from the source. The
convective or absolute nature of unstable waves is determined via the ‘pinching’
method, Briggs (1964), which looks for algebraic branch points of the complex dis-
persion relation α(ω) in the complex ω-plane where the group velocity, dω/dα, equals
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zero. Special emphasis is placed on the topography of the spatial branches emanating
from the branch point, at least two of which must lie in distinct halves of the complex
α-plane when ωi is sufficiently large and positive, Lingwood (1997). It will be seen in
the last section of the present study that, when impulsive disturbances are applied,
interfacial waves can be as important, if not more important, than TS waves in
determining the stability of the system owing to the absolutely unstable nature of the
former type of waves.

Since we are primarily interested in the effect of rainfall on boundary layer stability,
we will focus on the case of steady laminar flow of an air stream at high Reynolds
number over a water film that grows on a flat plate. This is a first step towards
a qualitative understanding of the mechanism of lift loss, so we neglect the effect
of varying angle of attack or finite curvature of the geometry, leaving these issues
to another study. In § 2 the governing equations describing steady development
of a boundary layer over a growing film are presented in the limit as Re → ∞
and Hf/L � 1. In § 2.1 the simplified equations and the corresponding similarity
solution are given when Hf/(LRe

−1/2) � 1. Next, in § 3 the equations describing the
dynamic condition of the system are given, first taking into consideration the nonlinear
interaction between the fluid film and the viscous sublayer, § 3.1, whereas in § 3.2 the
linearized triple-deck equations are presented via a stream function formulation. In § 4
the numerical method used for the solution of the linear stability problem is described,
§ 4.1, as well as the ‘pinching’ method used for identifying the algebraic branch points
in the dispersion relation, § 4.2. The results of linear stability analysis are presented
in § 5. The absolute/convective character of the unstable TS and interfacial waves is
discussed and compared in § 5.1.1 and § 5.1.2, and comparison is made with previous
studies. Finally, in § 5.2 a parametric study is presented that accounts for the effects
of surface tension and gravity on the stability of the air–water system and specific
conclusions are drawn for the problem of rainfall.

2. Problem formulation at steady state
We wish to examine two-dimensional laminar flow of air past a flat plate, under

conditions of rainfall. More specifically, we are interested in obtaining a quanti-
tative description of water-film formation and growth and, subsequently, of wave
development at the gas–liquid interface. Two-dimensional analysis will suffice for
the investigation of the system stability, especially during the initial stages of wave
formation. Far from the plate, the air velocity assumes its free-stream value, U∞,
parallel to the plate (zero angle of attack) and at right angles to gravity. In order to
simulate rainfall conditions the air stream is assumed to be carrying raindrops which,
as they sediment on the plate, coalesce and form a thin water film that covers the
plate entirely and is forced to flow under the action of shear from the air stream,
figure 2. The raindrop size is taken to be very small so that particle inertia can be
neglected. Consequently it is permissible to treat raindrops as spherical undeformable
particles, Happel & Brenner (1986, p. 129). In this context, and following Pelekasis
& Acrivos (1995), we obtain the following equation for the mass balance of the rain
particles at the interface:

φsn ·U ′ + f(φs)φsuteg · n = u′ · n, (2.1)

where f(φs) = 1− φs is a hindrance function accounting for the influence of particle
interactions on the terminal velocity of individual particles when the raindrop con-
centration, φs, inside the bulk of the air stream is small, ut is the Stokes terminal
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Figure 2. Schematic representation of the steady boundary layer flow.

velocity of raindrops, eg is the unit vector in the direction of gravity, n is the normal
vector at the air–water interface, and U ′, u′, denote the dimensional velocities in the
bulk of the gas stream and the film, respectively. In the following, variables in capital
letters correspond to quantities defined in the gas phase, variables in lower-case letters
refer to the water film whereas primed variables denote variables with dimensions.
Equation (2.1) reflects the fact that raindrops possess a slip velocity relative to the
bulk motion of the gas stream which, in the limit of negligible inertia of the raindrops,
is given by the Stokes terminal velocity ut corrected by the hindrance function f(φs).
In the same limit of negligible raindrop inertia the total velocity of raindrops in
the air stream, with respect to an inertial frame of reference, is the superposition
of the bulk velocity of the gas stream and their slip velocity. It is this slip velocity
that determines the formation and growth of the interface. Upon application of the
continuity of bulk normal velocities on either side of the interface we obtain

ṙeg · n = u′n, (2.2)

where ṙ = utφs is the rainfall rate in m s−1. More details on the model adopted for
rainfall, along with a more general formulation of the steady flow of the air stream–
water film system past curvilinear surfaces are given in Smyrnaios et al. (2000).

To describe the steady state of the boundary layer flow of an air stream that
develops above a growing film of water we introduce the following natural scalings,
bearing in mind that the air stream flows at high speed, Re � 1, while driving to
motion the more viscous film of water, Hf � L, uf � U∞; Hf , uf are the reference
liquid film thickness and velocity parallel to the plate, respectively, to be estimated
later. More specifically, the following dimensionless quantities are used as scales: L
and LRe−1/2 as characteristic length scales of the boundary layer type in the gas
phase and in the direction parallel, x, and perpendicular, Ȳ , to the plate, respectively;
U∞ and U∞Re−1/2 as characteristic velocities along the x- and Ȳ -directions in the gas
phase, respectively; L and Hf as characteristic length scales in the liquid film in the
direction parallel, x, and perpendicular, y, to the plate, respectively; uf and uf(Hf/L)
as characteristic velocities along the x- and y-directions in the film, respectively.
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Finally, the inertial scale, ρU2∞, is used for the pressure in both the gas, P , and the
liquid, p, phases, while Hf is used as a measure of the film thickness H . It should also
be noted that the gravitational force acting in the gas phase is incorporated in the
pressure term in both phases,

P +
gȲ LRe−1/2

U2∞
→ P , p+

gyHf

U2∞
→ p. (2.3)

This ensures that the total pressure in the gas phase, P , vanishes in the limit Ȳ →∞,
and introduces the effect of varying density across the interface in the momentum
equation of the film. In the following subscript s refers to dimensionless quantities
at steady state. In this context and ignoring terms which are O(Re−1/2), O(Hf/L), or
smaller, the governing equations inside the gas phase become:

continuity

∂Us

∂x
+
∂Vs

∂Ȳ
= 0; (2.4)

x- and Ȳ -momentum

Us

∂Us

∂x
+ Vs

∂Us

∂Ȳ
= −∂Ps

∂x
+
∂2Us

∂Ȳ 2
,

∂Ps

∂Ȳ
= 0; (2.5a, b)

far-field condition

Ȳ →∞, Us → 1, Ps → 0, (2.6)

at the interface, Ȳ = (Hf/LRe
−1/2)Hs(x), y = Hs(x);

continuity of the tangential and normal velocities

Us =
uf

U∞
us, Vs =

uf

U∞
Hf

LRe−1/2
vs; (2.7a, b)

continuity of the tangential and normal stresses

1

Re−1/2

∂Us

∂Ȳ
=

uf

U∞
µw

µ

L

Hf

∂us

∂y
, Ps = ps; (2.8a, b)

interfacial mass balance

us
dHs

dx
− vs =

ṙL

ufHf

. (2.9)

In the liquid film they are:

continuity and y-momentum

∂us

∂x
+
∂vs

∂y
= 0,

∂ps

∂y
= −gHf

U2∞

(
ρw

ρ
− 1

)
; (2.10a, b)

x-momentum(
uf

U∞

)2
ρw

ρ

(
us
∂us

∂x
+ vs

∂us

∂y

)
= −∂ps

∂x
+
µw

µ

uf

U∞
1

Re

(
L

Hf

)2
∂2us

∂y2
; (2.11)

no-slip, no penetration at the plate

y = 0, us = vs = 0. (2.12)

The requirement that both sides of (2.8a) and (2.9) balance each other provides us
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with an estimate for the thickness, Hf , and velocity, uf , in the film,

Hf

L
= Re−1/4

(
µw

µ

)1/2(
ṙ

U∞

)1/2

, (2.13)

uf

U∞
= Re1/4

(
µ

µw

)1/2(
ṙ

U∞

)1/2

. (2.14)

The above scalings essentially equate the growth rate of the film thickness in the
direction of the gas stream with the rainfall rate, and set the characteristic longitudinal
film velocity so that the film sustains the shear rate that is exerted upon it by
the gas stream. For the steady-state analysis the effect of surface tension on the
normal force balance is neglected owing to the small value of the inverse Weber
number, We−1 = (σ/ρU2∞)/(Hf/L

2). For a wing section with length L ≈ 30 cm,
a gas stream with free-stream velocity 10 m s−1, and relatively low rainfall rate,
ṙ ≈ 0.001 cm s−1, (2.13) and (2.14) give an estimate for the film thickness and velocity
of Hf ≈ 0.1 mm and uf ≈ 0.003 m s−1, respectively. For the same set of parameters
Hf/(LRe

−1/2) ≈ 0.15. As the rainfall rate increases this ratio increases as well.

2.1. Solution in the limit Hf/(LRe
−1/2)→ 0

As was seen in the previous section, the thickness of the film is normally much smaller
than that of the surrounding boundary layer. Consequently, and as a first step in the
analysis, we take Hf/(LRe

−1/2) to be very small in order to obtain the zeroth-order
solution in this limit. As a result the governing equations in the gas phase admit the
usual Blasius similarity solution. With η = Ȳ /x1/2, we let U0 = dF/dη and obtain

2
d3F

dη3
+ F

d2F

dη2
= 0, F → 1, η →∞; F =

dF

dη
= 0, η = 0; (2.15)

whereas the equations in the film become

∂u0

∂x
+
∂v0

∂y
= 0,

∂2u0

∂y2
= 0,

∂p0

∂y
= −gHf

u2
f

(
ρw

ρ
− 1

)
(2.16a, b, c)

with boundary conditions

y = 0, u0 = v0 = 0, (2.17)

and at the interface, Ȳ = 0, y = H0(x),

∂u0

∂y
=

0.332√
x
, u0

dH0

dx
− v0 = 1, (2.18a, b)

P0 = 0, p0 = (H0(x)− y)
gHf

u2
f

(
ρw

ρ
− 1

)
. (2.19)

The above set of equations for the water film also admits a similarity solution of the
form

H0(x) = x3/4

√
2

0.332
, u0 = x1/4z

√
0.664, v0 =

z2

2
, z =

y

H0(x)
. (2.20)

Clearly then, in this limit, simple shear flow conditions prevail in the film. The steady
solution obtained in this fashion can be viewed as the leading term in an expansion
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in terms of powers of Hf/LRe
−1/2 ≡ ε:

Us = U0 + εU1 + O(ε2), Vs = V0 + O(ε), Ps = 0, Hs = H0 + O(ε),

us = u0 + O(ε), vs = v0 + O(ε),

ps =

(
ε
µ

µw

)2

p0 + O(ε3) =

(
ε
µ

µw

)2
H0(x)− y

Fr

(
ρw

ρ
− 1

)
+ O(ε3),

 (2.21)

where

p0 =
p′

ρu2
f

, Fr =
u2
f

gHf

. (2.22)

Details on the derivation of the asymptotic expansion, along with a numerical solution
valid even when Hf/(LRe

−1/2) = O(1), are given in Smyrnaios et al. (2000). At this
point it is sufficient to point out that U1 is obtained as part of the solution to the
linearized boundary layer equations with non-vanishing slip velocity at the interface.
It arises in the O(ε) correction to the tangential velocity continuity equation, (2.7a),
and it is needed for the dynamic analysis that follows in the next section. In particular,
its value at the interface is used for the description of the base state of the system in
the viscous sub-layer at t = 0 and is

U1(x0, Ȳ = 0) =
µ

µw
u0(x0, z = 1). (2.23)

It should also be noted that in the rest of the paper the dynamic state of the air–water
system will be signified by the following hatted variables, which contain both the base
and disturbance flow fields:

Û =
U ′

U∞
, V̂ =

V ′

U∞
, P̂ =

P ′

ρU2∞
, û =

u′

U∞
, v̂ =

v′

U∞
, p̂ =

p′

ρU2∞
, Ĥ =

H ′

Hf

.

(2.24)

Some of these definitions are different from those used for the steady-state solution,
but in this way the same reference state is introduced in the different regions of the
flow in order to facilitate comparison of magnitudes of all variables.

3. Stability analysis
3.1. Triple-deck formulation

As was pointed out in the introduction, the fastest growing disturbances in boundary
layer flow are those corresponding to the triple-deck scale. Therefore, for a plate with
characteristic length L the appropriate local variable for the description of the stability
of the flow, at a given station x′ = x′0 of the basic flow, is the short scale coordinate
X = (x′ − x′0)/λ, where λ = LRe−3/8. Then, following Smith et al. (1981), the shortest
film thickness, Hf , for which the interaction between the film and the gas stream can
cause large-scale flow separation is the one that is comparable to the thickness of the
viscous sublayer in the gas phase, λ1/3L2/3Re−1/2, and because λ = LRe−3/8, it follows
that Hf = LRe−5/8. Consequently, setting Hf = LRe−5/8 in conjunction with (2.13)
provides a characteristic length scale of the problem, L, which is not necessarily equal
to the length of the plate, with ε = Hf/(LRe

−1/2) = Re−1/8 as the small variable used
for the asymptotic description of the flow in triple-deck theory. It is important to
note that the triple-deck formulation can also capture the evolution of waves that
are longer or shorter than LRe−3/8, provided that Hf � λ, by appropriate rescaling
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of the triple-deck equations. Since we are interested in disturbances that arise in
the vicinity of the film–air interface their appropriate time scale is λ/uf , where uf is
the characteristic velocity of the base and disturbance fields in the liquid film, and
subsequently the fast time variable is defined as

T =
uft
′

λ
=

µ

µw

U∞Hft
′

LRe−1/2LRe−3/8
=

µ

µw

(
t′U∞
L

)
ε−2 =

µ

µw

t

ε2
. (3.1)

In order to introduce the disturbance a certain location x0 = x′0/L on the plate is
chosen. Since the local coordinateX varies on a much shorter length scale, longitudinal
variations of the basic flow are negligible when compared to those of the secondary
flow, ∂/∂X = (∂/∂x)(λ/L), and consequently the former is treated as though it were
parallel (parallel base flow assumption). The structure of the disturbance flow field
in the gas phase is then characterized by three distinct regions, as was mentioned in
the introduction, figure 1. The dimensionless velocity and pressure in each deck are

signified by (U,V , P ), (Ū, V̄ , P̄ ), and ( ¯̄U, ¯̄V , ¯̄P ), respectively.
The lower deck, the one attached to the interface, is the viscous sublayer and it is

the region where strong interaction between the two phases takes place. Its thickness
is of order LRe−5/8 and the fluid velocity and pressure scale as

Û =
µ

µw
εU(X,Y , T ) + O(ε2), V̂ =

µ

µw
ε3V (X,Y , T ) + O(ε4), P̂ =

(
µ

µw
ε

)2

P (X,T ),

(3.2)

with Y = y′/(LRe−5/8). The particular scalings arise as a result of the balance between
convection, viscous dissipation and pressure of the disturbance flow field in the vicinity
of the interface. The appearance of the group εµ/µw indicates that the proper scalings
for velocity and pressure in the lower deck are uf and ρu2

f , respectively. It should
also be noted that the base velocity of the boundary layer, as seen on the scale of
the lower deck, is O(ε), i.e. it is of the same order of magnitude as the disturbance
velocity U. This behaviour is reflected in the form of the lower-deck description of
the flow, (3.2), and the initial condition for the disturbance velocity in the lower deck,
(3.18) below. Substituting in the momentum and continuity equations and neglecting
higher-order terms we get

µ

µw

(
∂U

∂T
+U

∂U

∂X
+ V

∂U

∂Y

)
= −∂P

∂X

µ

µw
+
∂2U

∂Y 2
, (3.3)

∂U

∂X
+
∂V

∂Y
= 0,

∂P

∂Y
= 0. (3.4)

The main deck is located immediately above the viscous sublayer. The flow in it is
inviscid, but rotational, its thickness is of the order of the thickness of the boundary
layer at base state, i.e. LRe−1/2, Ȳ = y′/(LRe−1/2), while velocity and pressure inside
it scale as

Û = U0(x, Ȳ ) + ε

(
µ

µw
Ū(X,T , Ȳ ) +U1(x, Ȳ )

)
+ O(ε2),

V̂ = Re−1/2V0(x, Ȳ ) + ε2
µ

µw
V̄ (X, Ȳ , T ) + O(ε3), P̂ =

(
ε
µ

µw

)2

P̄ + O(ε3),

 (3.5)

Clearly the longitudinal component of the disturbance velocity field is of higher order
than the base state, whereas the opposite is true with the transverse part. In this
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fashion the main deck equations take the form

U0

∂Ū

∂X
+ V̄

∂U0

∂Ȳ
= 0,

∂Ū

∂X
+
∂V̄

∂Ȳ
= 0,

∂P̄

∂Ȳ
= 0. (3.6)

Owing to the particular form of the above set of equations their solution is of the
form

Ū = A(X)
∂U0

∂Ȳ
, V̄ = − ∂A

∂X
U0. (3.7)

The longitudinal velocity has to match as the lower deck merges with the main deck.
This gives

U(Y →∞) = A(X)
∂U0

∂Ȳ
(x0, Ȳ = 0) +

µw

µ

[
∂U0

∂Ȳ
(x0, Ȳ = 0)Y +U1(x0, Ȳ = 0)

]
, (3.8)

with A(X) interpreted as a displacement thickness due to the viscous sublayer, and U1

given by (2.24). The terms appearing in the above equation are obtained by letting the
main-deck description of the longitudinal velocity approach zero and then expressing
the transversal coordinate in the main deck, Ȳ , in terms of the inner variable, Y .
This balance, in conjunction with continuity, provides the scalings for velocity and
pressure in this layer, equation (3.5).

In the upper deck potential flow conditions prevail, the characteristic length scale

in the y-direction is LRe−3/8, ¯̄Y = y′/(LRe−3/8), and the velocity and pressure scale as

Û = 1 + ε2 ¯̄U(X, ¯̄Y ,T ) + O(ε3), V̂ =ε2 ¯̄V (X, ¯̄Y ,T ) + O(ε3), P̂ = ε2 ¯̄P (X,T ) + O(ε3),

(3.9)

the particular scalings being determined by the requirement that the normal velocity
match as the main and upper decks merge. Substituting in the governing equations
we obtain for the upper deck

∂2 ¯̄P

∂X2
+
∂2 ¯̄P

∂ ¯̄Y
2

= 0,
∂ ¯̄V

∂X
= − µ

µw

∂ ¯̄P

∂ ¯̄Y
, ¯̄Y →∞, ¯̄P → 0. (3.10)

The pressure is then given by the solution of Laplace’s equation in the form of an
integral equation. Making use of the boundary condition at infinity, equation (3.10),
as well as the relationship between the pressure and the transverse velocity in the
limit as the upper deck merges with the main deck, the pressure at the gas–liquid
interface becomes

P̄ =
1

π

∫ ∞
−∞

∂A

∂s

ds

X − s . (3.11)

This pressure variation in X is imposed throughout the lower and main decks (to
order ε2).

In the liquid film the scalings of the longitudinal velocity and the location of the
interface remain the same as for steady flow, while the pressure is imposed by the gas
phase,

û =
µ

µw
εu(X, y, T ) + O(ε2), v̂ =

µ

µw
ε3v(X, y, T ) + O(ε4),

p̂ =

(
ε
µ

µw

)2

p(X,T ) + O(ε3), Ĥ = H(X,T ).

 (3.12)

As will be seen at the end of this section the base-flow longitudinal velocity, the
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pressure, and the film thickness are of the same order as their dynamic counterparts
and are equal at T = 0. On the other hand the transversal velocity of the disturbance
field, whose scale is set by continuity to ε3, is much larger than the base transversal
velocity which scales as (uf/U∞)(Hf/L) = O(ε6). Hence v(T = 0) is set to zero. Next,
substituting (3.12) in the governing equations we obtain

ρ

ρw

µ

µw

(
∂u

∂T
+ u

∂u

∂X
+ v

∂u

∂y

)
= − µ

µw

∂p

∂X
− gHf

u2
f

(
ρw

ρ
− 1

)
∂H

∂X
+
µw

µ

∂2u

∂y2
, (3.13)

∂u

∂X
+
∂v

∂y
= 0,

∂p

∂y
= 0, (3.14)

with boundary conditions at the plate,

y = 0, u = v = 0, (3.15)

and at the gas–liquid interface, y = Y = H(X,T ),

U = u, V = v,
µ

µw

∂U

∂Y
=
∂u

∂y
, P − p =

σ

ρu2
fHf

ε2
d2H

dX2
,

∂H

∂T
+

(
u
∂H

∂X
− v
)

= 1.

(3.16)

The initial conditions of the disturbed flow in each deck, to leading order in ε, are
derived from the equivalent base flow conditions, to the same order in ε, and are

A(T = 0) = P (T = 0) = 0, p(T = 0) = p0(x0, y),

H(T = 0) = H0(x0), Ū(T = 0) = ¯̄U(T = 0) = 0,

U(T = 0) =
µ

µw

[
Y
∂U0

∂Ȳ
(x0, Ȳ = 0) +U1(x0, Ȳ = 0)

]
+UD,

 (3.17)

u(T = 0) = u0(x0, y), v(T = 0) = 0. (3.18)

In the above UD denotes a disturbance in the base velocity profile that will stimulate
secondary motion. It can have the form of an impulse, as required for the spatio-
temporal analysis that will follow. As shown in (3.18) and indicated by the base-flow
solution presented in § 2.1, the motion in the film and the lower deck is initially
described as a simple shear. The above set of equations constitutes the description
of the nonlinear behaviour of the system. The general framework of the analysis is
provided by earlier studies, Stewartson & Williams (1969), Smith (1979), establishing
the range of validity of triple-deck theory in the context of boundary layer stability.
It should also be noted that the procedure adopted here for obtaining the stability
equations follows closely the one presented by Timoshin (1997); however, the final
equations shown here are slightly different because they are adapted for the particular
choice of dimensionless variables and the different base flow used in the present study.

3.2. Linear stability analysis

The primary concern of the present study is to follow the behaviour of the system
in response to infinitesimal disturbances. As was pointed out in the introduction,
because the basic flow is spatially developing we have to be able to distinguish
between the ranges of applicability of temporal and spatial theory. In the study of
boundary layer instabilities, stability is often determined by periodically forcing the
flow at a given frequency. This is the so-called signalling problem characterized by
a disturbance of the form δ(x − x0)e

iωftH(t); δ(x) and H(t) denote the Dirac delta
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and the step function, respectively. Experimental results then seem to follow much
more closely the predictions of spatial theory, where the frequency ω is real and the
wavenumber α is complex, Gaster (1965). Following the terminology introduced by
Briggs (1964) and Bers (1975) in distinguishing between absolutely and convectively
unstable media in plasma physics, we study the response of the flow to an impulsive
disturbance of the form δ(x−x0)δ(t). Motivated by the findings of previous studies in
this context, Gaster (1965) for boundary layers, Huerre & Monkewitz (1985) for free
shear flows, Lingwood (1995) for rotating-disk boundary layer flow, we will determine
the asymptotic nature of instabilities in the limits X → ∞ or T → ∞, by examining
the branch-point singularities of the dispersion relation for complex frequencies, ω,
and wavenumbers, α.

In order to obtain the dispersion relation a disturbance field is superposed on the
base flow, as described via equations (3.17) and (3.18). The disturbed flow field is of
the form

U =
µ

µw

[
Y
∂U0

∂Ȳ
(Ȳ = 0) +U1(Ȳ = 0)

]
+ δUD1 + · · · , V = δVD1 + · · · ,

P = δPD1 + · · · , A = δAD1 + · · · ,

 (3.19)

u= u0 + δuD1 + · · · , v = δvD1 + · · · , H=H0 + δHD1 + · · · , p = p0 + δpD1 + · · · ,
(3.20)

with δ a measure of the magnitude of the linear disturbance, δ � 1, and subscript
D introduced in order to distinguish linearized flow disturbances from steady-state
corrections. It should be pointed out that since disturbances in the main and upper
decks are intimately related to disturbances in the displacement thickness, A, and
pressure, P , through equations (3.7) and (3.11), they need not be considered separately.
Thus, introducing the disturbance pressure in the x-momentum of the lower deck,
imposed by the upper-deck solution, and properly accounting for boundary condition
(3.11), allows the description of the linear behaviour of the system by solving the
linearized formulation inside the lower deck and the film only.

Next, a transformation is introduced that transfers the origin of the new coordinate
system to the location of the interface at steady state,

y −H0(x0)

H0(x0)
→ y,

Y −H0(x0)

H0(x0)
→ Y . (3.21)

The time-dependent location of the interface in the new coordinate system is then

y = Y =
H0 + δHD1 + · · · −H0

H0

= δ
HD1

H0

+ O(δ2) = δ~1 + O(δ2), (3.22)

The linearized set of equations that is produced after dropping higher-order terms
in δ is further modified through the introduction of stream functions, Φ1, Ψ1, in the
lower deck of the gas and in the liquid phase, respectively. Next, all the variables are
recast in normal mode form,

Φ1 = Φ(Y ) ei(αX/H0−ωT/H0), Ψ1 = Ψ (Y ) ei(αX/H0−ωT/H0), ~1 = ~ei(αX/H0−ωT/H0), (3.23)

where it is understood that the eigenvectors, Φ, Ψ , and the variables, ~, ω, α, all
may depend on x and t also. However, this is a higher-order effect and we need not
account for it at this stage of the analysis. Finally, the equations describing the linear
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stability of the system are in the gas phase

d4Φ

dY 4
+ iH0

µ

µw

(
ω − αA1 − αµw

µ
A2Y

)
d2Φ

dY 2
= 0, (3.24)

Y →∞, Φ = C

[
± α

A2

− µ

µw

(ω
α
− u0

)]
CA2Y (3.25)

(the plus or minus sign in front of the first term inside the brackets corresponds to
αr positive or negative, respectively), at the interface between the film and the lower
deck of the air stream, Y = y = 0

Φ = Ψ, (3.26)

dΨ

dy
= H2

0~A3

(
µw

µ
− 1

)
+

dΦ

dY
, (3.27)

d2Φ

dY 2
=
µw

µ

d2Ψ

dy2
, (3.28)

~[ω − αA1]− α Ψ
H0

= 0, (3.29)

d3Ψ

dy3
= −iH0

(
µ

µw

)2 [
(ω − αA1)

(
ρw

ρ

dΨ

dy
− dΦ

dY

)
+ αA2

(
ρw

ρ
Ψ − µw

µ
Φ

)]

+iH0

(
µ

µw

)2 [
~αH2

0

1

Fr

(
ρw

ρ
− 1

)
+ ~

1

We
α3

]
+

µ

µw

d3Φ

dY 3
, (3.30)

and in the liquid film

d4Ψ

dY 4
+ iH0

(
µ

µw

)2
ρw

ρ
(ω − αA1 − αA2y)

d2Ψ

dY 2
= 0, (3.31)

y = −1, Ψ =
dΨ

dy
= 0, (3.32)

with

Fr =
u2
f

gHf

, We =
ρu2

fHf

σε4
, H0 = H0(x0), A1(x0) = u0(y = 0) = x

1/4
0

√
0.664,

A2(x0) =
∂u0

∂y
(y = 0) = x

1/4
0

√
0.664

H0(x0)
, A3(x0) =

∂U0

∂Ȳ
(Ȳ = 0) =

0.332√
x0

,


(3.33)

and Y , y the transformed coordinates according to (3.21). Finally, C is a constant that
is related to the linearized pressure or the displacement thickness. It enters the analysis
as the linearized boundary condition for the pressure, (3.11), is incorporated in the
lower-deck formulation via the boundary condition at infinity for the longitudinal
velocity, (3.8).

At this point it should be noted that the solution to the above linearized set of
equations loses analyticity in α along the imaginary axis, αr = 0. This is a result of
the change in sign in the solution of the upper-deck equations depending on the sign
of αr and is reflected in the boundary condition at infinity (3.25). Consequently, the
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analysis that follows is restricted to positive values of the real part of the wavenumber
α, which will anyway be positive for real signals (see also Huerre & Monkewitz 1985).

4. Method of solution
4.1. Eigenvalue calculation

The linearized set of equations presented in the previous section can be solved to
provide the dispersion relation of the system, D(ω, α; x0, Fr,We, ρ/ρw, µ/µw) = 0, with
both ω and α treated as complex variables and the density ratio, ρ/ρw , the viscosity
ratio, µ/µw , the Froude number, Fr, the Weber number, We, and the streamwise
station x0 where the disturbance is applied, as parameters of the problem. There is
normally a large number of eigenvalues associated with a certain set of parameter
values. Since we are interested in identifying the most unstable eigenmode for the air–
water system and for two different families of eigenvalues, corresponding to TS and
interfacial waves, we initially obtain an asymptotic solution for the eigenfrequency in
terms of the wavenumber taken as real, or vice versa. Normally, it is easier to solve
asymptotically in terms of ω; the asymptotic results are given in the next section.
Then, a numerical scheme is used in order to provide a solution for ω, in terms of
α and the rest of the parameters of the problem. Finally the parameter values are
advanced and the evolution of ω in the parameter space is traced by means of a
simple continuation procedure. The numerical procedure that gives ω or α, given
the rest of the problem parameters, is described in the following. First, the stream
function, Φ, is transformed,

Φ̂ = Φ− C
[
α

A2

− µ

µw

(ω
α
− A1

)]
+ CA2Y (4.1)

so that Φ̂ approaches zero exponentially fast as Y goes to infinity. Furthermore, two
new variables are introduced, S = d2Φ̂/dY 2, R = d2Ψ/dy2, such that R(y = −1) = 1
as a condition that normalizes the eigenvector. Then we calculate, through asymptotic
analysis, a certain value for the frequency ω and the quantity

C2 ≡ d3Ψ

dy3
− µ

µw

d3Φ

dY 3
= −iH0

(
µ

µw

)2 [
(ω − αA1)

dΨ

dy

(
ρw

ρ
− 1

)
+ αA2Ψ

(
ρw

ρ
− µw

µ

)]

+iH0

(
µ

µw

)2

~

[
αH2

0

1

Fr

(
ρw

ρ
− 1

)
+ α3 1

We
− (ω − αA1)H

2
0A3

(
µw

µ
− 1

)]
(4.2)

which is obtained from (3.30); boundary conditions (3.26) and (3.27) have been
incorporated in the right-hand side of this expression. In this fashion, we obtain the
following set of equations to be solved:

d2S

dY 2
+ iH0

µ

µw

(
ω − αuA1 − αµw

µ
A2Y

)
S = 0, (4.3)

Y →∞, S → 0, (4.4)

Y = 0, S =
µw

µ
R,

dR

dy
− µ

µw

dS

dY
= C2, (4.5)

d2R

dY 2
+ iH0

(
µ

µw

)2
ρw

ρ
(ω − αA1 − αA2y)R = 0, (4.6)
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y = −1, R = 1. (4.7)

This set of equations can now be solved for S and R, assuming values for C2, ~,
C , ω, using the method of finite elements with increased accuracy owing to the
reduction in the order of differentiation. More specifically the B-cubic splines are
used as basis functions, which guarantee continuity up to the second-order derivative
of the unknown function. For more details on the application of B-cubic splines in
the finite element method the interested reader is referred to the article by Pelekasis,
Tsamopoulos & Manolis (1992). Having solved for R and S the remaining unknowns,
C2, ~, C , ω, can be calculated via equations (4.2) and (3.29), and (3.26) and (3.27),
after they are transformed according to (4.1):

Φ̂(Y = 0) + C

[
α

A2

− µ

µw

(ω
α
− A1

)]
= Ψ (y = 0), (4.8)

dΨ

dy
(y = 0) = H2

0~A3

(
µw

µ
− 1

)
+

dΦ̂

dY
(Y = 0) + CA2. (4.9)

In order to determine all the terms in these four equations the values of Φ̂, dΦ̂/dY ,
Ψ , dΨ/dy at Y = y = 0 are needed. These can be calculated, given the functions S
and R, via the following relations:

Φ̂(Y = 0) =

∫ Y=0

∞
dt(SY − St), dΦ̂

dY
(Y = 0) =

∫ Y=0

∞
Sdt, (4.10)

Ψ (y = 0) =

∫ y=0

−1

dt(Ry − Rt), dΨ

dy
(y = 0) =

∫ y=0

−1

Rdt, (4.11)

where use has been made of the boundary conditions

Ψ (y = −1) =
dΨ

dy
(y = −1) = 0, Φ̂(Y →∞) =

dΦ̂

dY
(Y →∞) = 0. (4.12)

Once ω and C2 have been updated, (4.3)–(4.7) are solved again and the entire pro-
cedure is repeated until convergence. Unfortunately this algorithm does not converge
in the range of interest of the parameters of the problem. Consequently, an alterna-
tive approach via the more powerful Newton’s method is adopted. The same set of
equations is solved, with the difference that at each iteration one obtains a new value
for all the unknowns simultaneously. This requires a reliable initial guess, which is
provided by the previous method. Then simple continuation is used to advance the
solution in the parameter space with Newton’s method. Normally three to four iter-
ations are sufficient to give accuracy up to the eighth significant digit. The accuracy of
the spatial discretization is determined by the number of elements used in each phase.
Normally 50 elements are used in the liquid and 200 elements in the gas phase. This
is enough to provide accuracy of the eigenvalues up to, at least, the third significant
digit. Despite the fact that when Newton’s iterations are used the Jacobian matrix is
full owing to the integrals in (4.10), (4.11), as opposed to being banded in the case of
successive iterations, the CPU time required for the calculations is smaller owing to
the much smaller number of iterations that is required for convergence.

Once temporal stability analysis has been completed, the calculation is repeated
with the wavenumber α treated as an unknown. It is not very difficult to solve for α
because it turns out that neutrally stable points in the temporal case, ωi = 0, are also
neutrally stable points in the spatial case, αi = 0. In addition, it is found that Gaster’s
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transformation which was originally discovered for TS waves in a single fluid (Gaster
1962), holds in our problem as well for both families of eigenvalues. More specifically,
it is found that αi ≈ −αrωi/ωr in a substantial region around the neutrally stable
points. As a result it is possible to obtain a solution for α complex in terms of ω
in the vicinity of a neutral point for αr using an initial guess for αi provided by the
above relationship. Subsequently, it is easy to cover the entire parameter space for
both families of eigenmodes, treating α as an unknown.

An important issue can be raised regarding the parameter continuation procedure:
it is not entirely certain whether the eigenvalues that are obtained numerically
with the above procedure remain the most dangerous ones, as the continuation in
the parameter space proceeds, among the rest of the eigenvalues in the spectrum. In
order to resolve this issue the entire spectrum of eigenvalues is calculated occasionally,
given α for temporal or ω for spatial analysis along with the rest of the parameters,
via solution of the eigenvalue problem defined by the above set of equations. A
minor complication arises in the computation of α in spatial analysis owing to the
nonlinear dependence on α of equations (4.2) and (4.8). This is resolved by introducing
the additional unknowns and equations C∗ = αC , ~∗ = α~, ~∗∗ = α~∗, that depend
linearly on α. Discretizing (4.2) and (4.6) in the fashion described above we obtain
the generalized eigenvalue problem,

Ax+ γBx = 0, (4.13)

where γ stands for either ω or α, x is the eigenvector and A, B , are matrices
incorporating the finite element discretization and the parameters of the problem. A
standard IMSL routine dedicated to the treatment of generalized complex eigenvalue
problems is employed for the solution of (4.13). This approach verified that the
eigenvalues already obtained via parametric continuation are indeed the most unstable
eigenvalues of their corresponding families. Details of the computations are not given
here in the interest of brevity.

4.2. ‘Pinching’ method

A central aspect of the numerical solution is the application of the ‘pinching’ method
for the determination of the convective or absolute character of the unstable waves
that develop in response to an impulsive disturbance of the flow at some station
x0. It was originally proposed by Briggs (1964) and Bers (1975) in the context of
plasma physics and has recently been extensively used in fluid dynamics as well,
Huerre & Monkewitz (1985, 1990). This method consists of two steps both involving
solution of the dispersion relation, which is provided implicitly by the solution of
the linearized set of equations given in the previous section. First, the frequency ω
is obtained as a function of α, taken to be real. If a certain range of positive values
for ωi is identified, then unstable waves exist. Their specific nature is determined
in the next step which involves solution for the wavenumber α, taken as complex,
as a function of ω = ωr + iωi. The goal is to find the complex value of α0 for
which a wave with zero group velocity is obtained, (dω/dα)(α0) = 0. The complex
frequency ω0 = ω(α0) is called the absolute frequency and normally corresponds to
a second-order algebraic branch point of the function α(ω). In order for the two
branches α−(ω), α+(ω) to actually represent left- and right-moving waves when the
inverse Laplace transform is taken, hence establishing that the ‘pinching’ point indeed
signifies a convectively/absolutely unstable family, they must be located on different
semiplanes, defined by the real α-axis, as their contour deforms or, equivalently, as ωi
increases (Lingwood 1997). Then, the complex frequency ω0 = ω(α0) that is obtained
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Figure 3. ‘Pinching’ diagram of the air–water system when (a) x0 = 0.6, (b) x0 = 1.0, for the
interfacial mode and when (c) x0 = 1, for the TS mode, where only the α+(ω) branch is shown;
We−1 ≈ 66, Fr ≈ 30.

at the pinching point provides the growth rate of a wave packet that always remains
in the neighbourhood of the point x0 where the impulse was originally applied.
Consequently, solving for α as a function of ωr for different values of ωi amounts to
deforming the contour of the two spatial branches α−(ω), α+(ω). For some value of
ωi = ωi0 the two branches become pinched, figure 3. Pinching occurs precisely at the
point where the group velocity is zero. The Briggs criterion identifies as convectively
unstable waves those for which ωi0 < 0, whereas waves for which ωi0 > 0 are
absolutely unstable. The former waves evolve in space whereas the latter evolve in
time at a certain spatial location (see also the schematic representations available in
Huerre & Monkewitz 1990).

As can be seen from figure 3(a, b) and has been extensively verified for a wide range
of parameters in the present study, this is the case with interfacial waves whenever
they are identified as convectively/absolutely unstable. As will be seen in the next
section, interfacial waves are convectively unstable except for a region in x0 in which
they are absolutely unstable. For example when ρ/ρw ≈ 0.001, µ/µw ≈ 0.018, Fr ≈ 30,
We−1 ≈ 66, the interfacial waves for the air–water system are convectively unstable
except for a pocket of absolute instability, 0.7 6 x0 6 2.5. Figure 3(a, b) shows the
pinching process for the above parameter values when x0 is 0.6 and 1.0. Note that
pinching occurs when −0.1 6 ωi 6 0 in the former case whereas 0.2 6 ωi 6 0.3 in the
latter and that the two branches move towards a different semi-plane as ωi increases.

On the other hand, TS waves are convectively unstable since no pinching point
was found for the entire parameter range that is relevant to our problem; see also
figure 3(c) where only one branch is shown. It should be noted that ‘non-pinching’
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branch points exist, as can be inferred by noticing the two ‘kinks’ that start developing
for large negative values of ωi in figure 3(c). These kinks probably correspond to
branch points between the basic mode shown in figure 3(c) and higher TS eigenmodes
(Hultgren 1987). However, such branch points are non-pinching because all these
branches remain on the same semi-plane as ωi increases. Branches corresponding to
higher TS eigenmodes were identified numerically in the present study also. However,
the specific process by which they pinch with the leading TS branch was not pursued.
In addition, on comparing the numerical findings for TS waves of the air–water
system examined here with the results for a single-phase boundary layer flowing past
a flat plate we find that they are almost indistinguishable owing to the very small value
of the density and viscosity ratios. In fact, TS waves in a boundary layer over a flat
plate are known to be spatially growing (Gaster 1965) in the presence of an impulsive
disturbance. This, in conjunction with our own findings, leads to the conclusion that
TS waves remain convectively unstable in the context of our study as well.

The response of convectively unstable flows to a disturbance with constant fre-
quency ωf applied at a station x0 of the basic flow (the signalling problem) is
determined by the findings of spatial analysis. That is, setting ω real, ω = ωf , the
asymptotic behaviour of the system as t → ∞ is time periodic with frequency ωf
and wavenumber α = αr + iαi provided by the solution of the dispersion relation
with α unknown (Huerre & Monkewitz 1985). Therefore, in the following section in
regions where both families of waves are convectively unstable we use their spatial
growth rate, αi, in order to determine which one of the two will dominate the flow
locally. In regions where interfacial waves are found to be absolutely unstable they
will eventually dominate the flow locally.

As was mentioned in the previous paragraphs the evaluation of the pinching
points was originally made by constructing the two branches α−(ω), α+(ω), while
parametrically varying ωr for different values of ωi. Thus, it is verified that the two
branches reside in different semiplanes of the complex plane as ωi increases; the
pinching diagram is constructed and the location of the pinching point is identified
by noting the interval of values of ωi within which the mutual exchange between
the two branches takes place. Clearly, this method cannot give the pinching point
with great accuracy. It provides, however, a good first estimate, ω0,ap, α0,ap, for a more
systematic search. To this end, we use the pinching condition (dω/dα)(α0) = 0 or
(∂ωr/∂αr) + i(∂ωi/∂αr) = 0, upon introducing complex differentiation. In this fashion
the pinching point is obtained as the point α = αr + iαi in the α complex plane which
minimizes the function F(αr, αi) = (∂ωr/∂αr)

2 + (∂ωi/∂αr)
2. Clearly, the point α0(ω0)

in the neighbourhood of α0,ap(ω0,ap), which minimizes F(αr, αi) with F(α0r, α0i) ≈ 0
corresponds to the pinching point. This can be easily verified by calculating the two
branches corresponding to ω0i. The complex frequency ω = ωr +iωi can be calculated
as a function of the complex wavenumber α numerically, as was shown in § 4.1. At
the same time, analytical evaluation of the partial derivatives appearing in F is not
straightforward. Therefore, we resort to numerical differentiation, introducing a small
parameter δD and approximating F as

F(αr, αi) =

(
ωr(αr + δD, αi)− ωr(αr, αi)

δD

)2

+

(
ωi(αr + δD, αi)− ωi(αr, αi)

δD

)2

. (4.14)

It is understood that the minimum should not vary as δD → 0, and indeed this
was verified to be the case. In this fashion, using a standard minimization routine,
the pinching point was calculated within two to three significant digit accuracy. In
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particular, for the cases depicted in figures 3(a) and 3(b) it was found that ω0i = −0.011
and 0.250, respectively.

5. Results and discussion

5.1. Temporal and spatial stability analysis

We are primarily interested in the study of the stability of the air–water system. In
this case, for a gas layer with large free-stream velocity, U∞ = 40 m s−1, that flows
over a plate with characteristic length L = 30 cm, which is well within the range
of chord lengths of wing sections used in airfoil testing (Thomson, Jang & Dion
1995), and under mild rainfall conditions, ṙ = 100 mm h−1, the Reynolds number
takes the value Re = 8 × 105, and the fastest growing TS mode is the one with
wavelength λ = LRe−3/8 = 2 mm (Smith 1979). The rest of the parameters take
the values, µ/µw ≈ 0.018, ρ/ρw ≈ 0.001, Fr ≈ 30, We−1 ≈ 66. Keeping the rest of
the parameter values constant, we find that the length L∗ for which the condition
Hf(L

∗)/L∗Re−5/8(L∗) = 1 is satisfied is, roughly, 30 cm. This being comparable in
magnitude with the length of wing sections used in wind tunnel testing of airfoils,
and given the very high value of the Reynolds number, we can assume that we
will be operating in the triple-deck regime. Despite the fact that we have ignored
higher-order corrections in the small parameter Re−1/8, the theory gives a fairly good
qualitative picture of the flow for the range of Reynolds numbers examined here;
see also figure 1 in Healey (1995) for a comparison between experimental data, the
leading-order triple-deck prediction and the solution of the Orr–Sommerfeld stability
equations for the neutral stability curve of the flat boundary layer. In this case the
characteristic film thickness as given by (2.13), Hf ≈ 0.06 mm, is also of the order of
magnitude of measured heights for films that form on airfoils (Feo & Gonzalez 1988)
under simulated rainfall conditions.

The streamwise station on the plate, x0, where the disturbance is applied is an
additional parameter that takes the value 1 when x′0 ≈ 30 cm, for the above set of
parameter values. However, x0 can also take values that are larger than 1, as long
as x0 = O(1) so that the assumption that the film thickness, Hf , and the lower-deck
thickness, LRe−5/8, are comparable in size is not violated. In general, the idea is that
given the free-stream velocity and the rainfall rate one can calculate the length L∗ for
the air–water system for which Hf(L

∗)/L∗Re−5/8(L∗) = 1. Then, given the length of
the plate, approximating the chord length of the wing section under consideration, the
relevant range of dimensionless streamwise locations, x0, is calculated. For example,
for the above parameter range if a plate of length 70 cm was used instead, then, since
L∗ is 30 cm, x0 can be as high as 7/3.

5.1.1. Tollmien–Schlichting waves

In this parameter range we focus on two possible limiting structures in the flow.
According to the first one the film is so heavy and viscous that it behaves almost like
a solid. Interfacial waves occur as a higher-order effect, dominated by the TS waves
that develop inside the gas phase in a fashion similar to flow past a dry flat plate.
Consequently, and provided that the wavenumber α remains O(1) as µ/µw → 0, the
stability equations inside the gas phase collapse to those obtained by Smith (1979)
who applied triple-deck theory to flow past a dry flat plate. Setting Φ̄ = Φ(µ/µw),
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ω̄ = ω(µ/µw), and satisfying no slip at the interface we obtain ω̄ as the solution of

dAi

dz
+

(H0αA2)
1/3

(A2)2
i1/3α

∫ z

∞
Ai dt = 0, z = − H0ω̄i1/3

(H0αA2)2/3
, (5.1)

with Ai the Airy function of the first kind. By substituting H0, A2, as functions of x0

and transforming α according to α/H0 = k, equation (5.1) gives the equation derived
by Smith (1979). Solving (5.1) for the neutral stability values of ω and α one obtains

α = x
1/8
0 0.3323/4

√
2, ω̄ ≈ 1.079. (5.2)

The above equations predict that when x0 = 1 the value of α for which neutral
stability is obtained is 0.618, a result verified by the numerical results in the present
study, see figure 4(a). It is also easily seen that the same result holds when µ/µw = 1
or µ/µw → 0 with α = O(1). It will be seen later that the lower neutral curve of the
TS waves is recovered, and that the neutral stability curve for the air–water system
closely follows equation (5.2).

Simple numerical continuation, as described in the previous section, is then used to
march the solution to the parameter range of interest. An extensive numerical study
has been conducted in order to identify the stability characteristics of this solution
family, first in the context of temporal stability. Most of the parameter space has been
covered, but results are presented for the parameter range relevant to the problem
at hand. As can be seen from figure 4(a) the dependence of ωi on the wavenumber
α for the temporal TS family closely resembles the findings of single-phase stability
analysis. Gravitational and capillary forces are not big enough to affect the stability
characteristics of the system significantly. Note the (µ/µw)2 term that multiplies the
inverse Weber number, We−1, and the inverse Froude number, Fr−1, in equation (4.2),
as opposed to the large values reached by ω when α remains O(1) in the context of
TS waves. The viscosity and density ratios are very small for the air–water system
so, unless We−1 or Fr−1 is quite large, they cannot play an important role. Thus, the
family is stable for very long waves, whereas it exhibits a maximum in the growth
rate at moderate values of the wavenumber, α ≈ 1.5, remaining unstable for the entire
range of short wavelengths. This behaviour indicates that the family of TS waves that
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is calculated here is part of the lower neutral branch in the fully stability diagram; see
also figure 1 in Smith (1979). In figure 4(b) the evolution of the family of spatial TS
waves is given as the location of the base flow, x0, varies. It is seen that the value of
the real frequency, ω, for which the growth rate, αi, crosses to negative values does not

depend on x0, whereas the wavenumber, α, increases like x
1/8
0 . This behaviour persists

for the values of the frequency and wavenumber corresponding to the maximum, in
absolute value, of ωi. This agrees well with the result presented by Smith (1979), after
applying the proper transformation for the wavenumber and eigenfrequency between
that study and the present one for the leading-order behaviour of the lower neutral
branch of the TS waves, as expressed through (5.2).

5.1.2. Interfacial waves

It is also known that when a more viscous fluid is sheared by a less viscous one
a long-wave interfacial instability arises, Yih (1967), Hooper & Boyd (1987). The
context of the last two studies is different from that of the present one, since the
first one treats channel flow, whereas the second one considers the thickness of the
viscous sub-layer in the less viscous fluid to be much larger than the thickness of
the viscous film that is attached on the plate. An interesting limiting structure was
presented by Timoshin (1997), in which the streamwise velocity and shear rate at the
interface remain finite in the limit µ/µw → 0. In this limit and in the context of the
non-dimensionalization used here the eigenfrequency of the interfacial mode is

ω = αu0 − iα4

3
W̄ e−1 − iH2

0α
2

3

(ρw/ρ)− 1

F̄r
+H0

α2

2
A3

−Ai(0)D2/3 + 2
3

(dAi/dz)(0)D

±A2
3(dAi/dz)(0) + αD1/3

∫ 0

∞ Ai dz

D = (iH0αA2), W̄ e = We

(
µw

µ

)2

, F̄r = Fr

(
µw

µ

)2

,

∫ 0

∞
Ai dz = − 1

3
, ± : αr ? 0

(5.3)

where dependence on the ratio µ/µw has been scaled out of W̄e, F̄r. Simple numerical
continuation was used, as described in the previous section, between this asymptotic
solution and the dimensionless parameter range of interest in the present study.
Figure 5 shows the behaviour of the family corresponding to interfacial waves for
the same parameter values that were used for the calculations in figure 4(a), as
predicted by the asymptotic relation (5.3) and computed numerically via solution
of the eigenvalue problem defined in § 4.1. The stability analysis presented by Tsao
et al. (1997) essentially covers the same asymptotic limit as (5.3). As can be seen
from figure 5 this limit significantly shrinks the range of unstable wavenumbers by
more than halving the neutral stability limit, which is bound to have an effect on
the spatio-temporal properties of interfacial waves. Now long waves are unstable,
the maximum growth rate is predicted for larger values of the wavenumber, α ≈ 5,
while short waves become stable. This is in contrast to the situation observed for TS
waves where the family is stable as α → 0. Consequently it is conjectured that this
family is part of the upper neutral branch of the full stability diagram; see figure 13
in Yiantsios & Higgins (1988) for the neutral stability diagram of the interfacial
mode for a different parameter range. The stabilizing effect that surface tension and
gravity normally have for this type of wave is encountered here as well. Comparing
the growth rates of these two families it follows that TS waves grow much faster than
interfacial waves. This is contrary to what Timoshin (1997) found in his study, when
operating, however, in the regime of relatively short waves with density ratio of order



344 N. A. Pelekasis and J. A. Tsamopoulos

0

–3
0 5 10 15 20 25

α

xi

–2

–1

1

2

3

Figure 5. Evolution of the growth rate, ωi, as a function of the wavenumber, α, for the interfacial
mode: ——, numerical solution obtained for the air–water system, µ/µw = 0.018; - - - -, asymptotic
prediction in the limit µ/µw → 0; We−1 ≈ 66, Fr ≈ 30.

one. Clearly, the air–water system does not belong to this regime. Our results are
in agreement with the findings of Boelens & Hoeijmakers (1997), and Ozgen et al.
(1998), who performed a temporal stability analysis on Newtonian or non-Newtonian
de-/anti-icing fluids, sheared into motion by an air stream forming a boundary layer
on top of them, and found that TS waves dominate interfacial waves.

Contrary to the findings of temporal analysis, a more thorough study of the
dispersion relation, treating both ω and α as complex numbers, reveals that the
interfacial waves of the air–water system exhibit a pocket of absolute instability,
0.7 6 x0 6 2.5 when Fr ≈ 30, We−1 ≈ 66, in response to an impulsive disturbance.
Table 1 shows the evolution of the imaginary part ω0i of the algebraic branch point,
also known as the absolute frequency, and the maximum in ωi predicted by temporal
analysis as a function of the streamwise location of the disturbance x0, indicating a
region of absolute instability. Indicative pinching diagrams are shown in figures 3(a, b)
and 6(a, b) when x0 = 0.6, 1, 1.5, 3.0, respectively, with the imaginary part of the
branch point ω0 changing sign from negative to positive in the interval 0.6 < x0 < 0.7
and vice versa in the interval 2.5 < x0 < 2.6. Only the general trends of the two
branches to pinch and occupy different parts of the complex plane as ωi increases
are shown in these graphs while the exact values of the pinching points are given in
table 1. On the other hand TS waves are convectively unstable for the entire range
of values of x0 examined. Figure 3(c) shows an indicative pinching diagram for TS
waves when x0 = 1. As a result interfacial waves will tend to eventually dominate
the dynamic behaviour of the system within the above region. The fact that absolute
instability prevails in a finite region along the plate leads to the plausible conjecture
that the air–water system may exhibit self-excited global modes at specific complex
frequencies, ωG, see also Huerre & Monkewitz (1990). This is a very important finding
as it may explain the strong interaction between the film and the boundary layer that
was conjectured to cause premature separation.

Outside that region of absolute instability both families are convectively unstable
and their response to an isolated signal of constant frequency, ωf , is steady periodic,
characterized by the real frequency ωf and by a wavenumber αr and growth rate
αi determined by spatial analysis. Figure 7(a–d) compares the growth rates and
wavelengths of the two solution families, in the context of spatial analysis, when
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x0 ωi,max ω0,i

0.4 0.96 −0.253
0.6 1.45 −0.011
0.7 1.65 0.081
1.0 2.1 0.250
1.5 2.6 0.304
2.0 2.9 0.209
2.5 3.1 0.035
3.0 3.28 −0.187
5.0 3.7 −1.323
6.0 3.85
8.0 4.0

Table 1. Evolution of the maximum growth rate, ωi,max, and the absolute growth rate, ω0,i, of
interfacial waves with increasing streamwise location, x0, on the plate for the air–water system;
ρ/ρw ≈ 0.001, µ/µw ≈ 0.018, Fr ≈ 30, We−1 ≈ 66.
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x0 = 0.6 (figure 7a, b) and 3.0 (figure 7c, d) where they are both convectively unstable.
It should be noted that interfacial waves have higher growth rates than TS waves,
restricted, however, to a narrow range of normally lower forcing frequencies. This
pattern of higher growth rates for convectively unstable interfacial waves persisted in
the entire parameter range that is relevant to our study.

The curves corresponding to interfacial waves in figure 7(b, d) refer to the right-
moving branch, with respect to x0, shown in figures 3(a) and 6(b). The left going
branch is the one that is gradually receding towards the lower α semi-plane as ωi
increases and it does not exhibit any spatial growth. Both branches can be obtained
asymptotically in the limit µ/µw → 0. The complex wavenumber α remains O(1) when
ωf = O(1) in this limit for right-going waves and can be obtained by solving equation
(5.3) for given ω = ωf real. On the other hand, the wavenumber α is constantly
increasing in the limit µ/µw → 0 when ωf = O(1) in the second branch. It can be
shown that α = α1(µ/µw)−6/7, where α1 is calculated from

α3
1 − H0A3(dAi/dz)(z = 0)(iα0H0A2)

2/3

iWe−1

∫ 0

∞
Ai dz

= 0, when
µ

µw
→ 0, (5.4)
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the particular scaling arising due to the formation of an O(µ/µw)2/7 boundary layer,
within the viscous sub-layer, which is attached to the interface. The curves corre-
sponding to TS waves in figure 7(a, c) also represent right-moving waves and can be
obtained asymptotically by the solution of (5.1) for unknown α.

5.2. Parametric study and conclusions

An extensive parametric study has been conducted in order to identify the stability
characteristics of the air–water system with varying Fr and We. As was mentioned
before, the TS waves are not significantly affected by the variation of the above
parameters owing to the small density and viscosity ratios between the two fluids,
at least within the range of We and Fr values that is relevant to our problem.
Figure 8 shows the variation of spatial growth rate αi of TS waves as a function
of the wavenumber αr for different values of We and Fr. Each of these curves has
been obtained by varying ωr while setting We, Fr, ωi and x0 fixed as is done in the
construction of pinching diagrams. Owing to the convectively unstable nature of this
family of waves ωi is set to zero while x0 is set to 1 as a reference length. Clearly,
gravity and capillarity do not have any significant effect on the TS mode since all six
curves are virtually indistinguishable. It was found that this behaviour persists for
larger values of x0.

Contrary to the behaviour of the TS waves, the interfacial waves are strongly
affected by the variation of Fr and We. The major effect of We is that as it decreases
the region of absolute instability is translated towards larger streamwise locations
x0. Increasing We−1 to 150 and subsequently to 350 moves the pocket of absolute
instability to the interval 1 6 x0 6 3.0 and 1.3 6 x0 6 3.2, respectively. Table 2 shows
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the variation of the maximum temporal growth rate, ωi, and the absolute growth
rate, ω0i, with varying x0, when We−1 = 350. Both sets of values are attenuated with
respect to the ones shown in table 1 owing to the increase of We−1. This behaviour
persists with increasing We−1 until, when We−1 becomes of order 1000, the region of
absolute instability disappears. Figure 9(a, b) shows the evolution of growth rate αi
as a function of the wavenumber αr for different values of We−1 at two streamwise
locations x0 = 0.6 and 3.4; ωi = 0. Near the leading edge, x0 = 0.6, very large
wavenumbers are marginally unstable and consequently surface tension does not
have a noticeable effect on them, whereas small wavenumbers are not affected by
surface tension. Thus, the major effect of decreasing We−1 is that the maximum in
the growth rate, which occurs for moderate values of αr , is accentuated until pinching
occurs. Indeed when We−1 ≈ 30 the family becomes absolutely unstable. On the
other hand, far from the leading edge, x0 = 3.4, short waves become increasingly
unstable. As a result, increasing We−1 narrows the region of unstable wavenumbers
by increasingly stabilizing very short waves, in favour of moderate waves which are
not affected as much, thus bringing about pinching. Indeed when We−1 ≈ 500 the
family becomes absolutely unstable. This can also be seen in figure 10, which shows
the pinching process for the case with We−1 ≈ 350, Fr ≈ 30, x0 = 3.0; pinching
occurs when ωi = 0.047 and the family is absolutely unstable. This situation is similar
to the one shown in figure 6(b) with the exception that in the latter case We−1 = 66,
pinching occurs when ωi = −0.187 and the family is convectively unstable.

Decreasing Fr results in narrowing the pocket of absolute instability while at the
same time attenuating the maximum in the growth rate. In fact, as Fr decreases to
20 and then 15 the interval of absolute instability shrinks to 0.7 6 x0 6 1.9 and
0.8 6 x0 6 1.4, respectively. Eventually, as Fr becomes smaller than, roughly, 10 the
region of absolute instability vanishes. The pattern of attenuating growth rate and
shrinking region of absolute instability can be easily verified by comparing table 3,
showing the evolution of the maximum temporal growth rate, ωi, and absolute growth
rate, ω0i, with varying x0, when Fr = 15, with table 1. In analogy with figure 9(a, b),
figure 11(a, b) shows the evolution of growth rate αi with varying wavenumber αr for
different values of Fr at the streamwise locations x0 = 0.6 and 2.5; ωi = 0. Unlike We,
Fr basically affects moderate wavenumbers. Given the tendency of αi versus αr curves
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x0 ωi,max ω0,i

1.2 1.0 −0.017
1.5 1.2 0.049
2.0 1.5 0.096
2.5 1.66 0.088
3.0 1.78 0.047
3.5 1.89 −0.018
5.0 2.1 −0.302

Table 2. Evolution of the maximum growth rate, ωi,max, and the absolute growth rate, ω0,i, of
interfacial waves with increasing streamwise location, x0, on the plate for the air–water system;
ρ/ρw ≈ 0.001, µ/µw ≈ 0.018, Fr ≈ 30, We−1 ≈ 350.
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Figure 9. Evolution of the growth rate, αi, versus αr for the interfacial mode with varying We.
ωi = 0, Fr ≈ 30; ——, We−1 = 66; - - - -, We−1 = 150; · · · · · ·, We−1 = 350. (a) x0 = 0.6,
(b) x0 = 3.4.
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Figure 10. Pinching diagram for the interfacial mode; x0 = 3, Fr = 30, We−1 = 350.

in this family to progressively include larger values of αr in the unstable regime as x0

increases, decreasing Fr results in attenuating the maximum growth rate of a wider
range of wavenumbers thus making pinching harder. In fact, the family becomes
absolutely unstable when Fr attains the value of 60 and 30 for the cases shown in
figures 11(a) and 11(b) respectively. This can also be seen in figure 12, which shows
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x0 ωi,max ω0,i

0.6 1.38 −0.109
0.7 1.57 −0.389
0.8 1.73 0.012
1.0 1.97 0.063
1.2 2.18 0.063
1.4 2.39 0.026
1.5 2.4 −0.002
3.0 2.93 −0.896

Table 3. Evolution of the maximum growth rate, ωi,max, and the absolute growth rate, ω0,i, of
interfacial waves with increasing streamwise location, x0, on the plate for the air–water system;
ρ/ρw ≈ 0.001, µ/µw ≈ 0.018, Fr ≈ 15, We−1 ≈ 66.
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Figure 11. Evolution of the growth rate, αi, versus αr for the interfacial mode with varying Fr.
ωi = 0, We−1 ≈ 66; (a) x0 = 0.6, ——, Fr = 30; - - - -, Fr = 15; · · · · · ·, Fr = 10, (b) x0 = 2.5, ——,
Fr = 15; - - - -, Fr = 10; · · · · · ·, Fr = 5.
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Figure 12. Pinching diagram for the interfacial mode; x0 = 1.5, Fr = 15, We−1 = 66.

the pinching process for the case We−1 ≈ 66, Fr ≈ 15, x0 = 1.5; pinching occurs when
ωi = −0.002 and the family is convectively unstable. This situation is similar to the
one shown in figure 6(a) with the exception that in the latter case Fr = 30, pinching
occurs when ωi = 0.304 and the family is absolutely unstable.
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The effect of rainfall rate ṙ and free-stream velocity U∞ on the stability character-
istics of the system was also examined. If L = 30 cm is the length of the plate and L∗
is chosen so that Hf(L

∗) ≈ L∗Re5/8(L∗), with Hf given by (2.13), then increasing the
rainfall rate amounts to decreasing L∗ while increasing We−1 and Fr like ṙ5/6. Keeping
this in mind, the stability characteristics of the air–water system are examined when
Fr ≈ 146, We−1 ≈ 329. This amounts to increasing the rainfall rate by a factor of 5
(ṙ = 500 mm h−1). The combined effect brought about by varying both We and Fr is
that the pocket of absolute instability of interfacial waves now becomes 1.2 6 x0 6 6.
As expected from the findings of the parametric study presented above, the range
of absolute instability is transferred to larger streamwise locations due to the higher
We−1 value, whereas increasing Fr results in a significant widening of this range.
However, the dimensional distance at which absolute instability arises is decreased,
compared to the case with lower rainfall rate, owing to the decrease of the character-
istic length L∗ needed for the film thickness to reach the triple-deck size with increasing
rainfall rate. In fact L∗ ∝ ṙ−4/3. Consequently increasing the rainfall rate by a factor
of 5 amounts to decreasing the value of L∗ for which x0 = 1 by, roughly, 8.5 times.
Since, on the other hand, the interval of absolute instability extends up to x0 = 6, for
given length of the test wing section, L, almost the entire section is immersed in a flow
that is absolutely unstable. Finally the stability of the system was examined for a case
with lower free-stream velocity, U∞ = 20 m s−1. The corresponding Fr and We−1 are
6.7 and 234.5, respectively. In this case both waves remain convectively unstable for
the entire range of x0 values examined. In general, increasing the free-stream velocity
tends to increase Fr while decreasing We−1, thus widening the pocket of absolute
instability and increasing the growth rate of unstable waves.

The findings of the present study demonstrate the importance of interfacial waves
in boundary layer stability in the presence of a growing water film. Unlike temporal
analysis, the approach adopted here allows a more general class of local flow pertur-
bations that is closer to practices often used in experimental investigations and that is
deemed to be pertinent to the problem of airfoil stability under conditions of rainfall.
In this case the pocket of absolute instability which is found to arise, in the parameter
range relevant to our problem, is conjectured to give rise to a global mode that
interacts intensely with the boundary layer, thus deteriorating airfoil performance.
Clearly further analysis is warranted in order to verify the global characteristics of
the flow as well as the effect of nonlinearity on growing waves.
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